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Summary
The load capacity of worm gears is mainly

influenced by the size and the position of the con-
tact pattern. A new method was developed that
allows for the determination and optimization of
the idle and load contact patterns in the design
stage. By this method, the contours of worm and
worm wheel are simulated point by point, taking
into account the boundary conditions of the man-
ufacturing process.

The idle contact pattern can be derived from
these contours by pairing them together in such a
way that the assembly deviations define the posi-
tion of worm and wheel. The load contact pattern
can be determined from the idle contact pattern
by adding the deflections of the teeth and gear
bodies and the elastic deformations of the bear-
ings and the housing.

This procedure can also be used for automated
optimization of the contact pattern, so optimum
machine settings can be found without a trial
manufacturing. Comparisons of these theoretical
contact patterns with real contact patterns of gears
in practice showed a good correlation.

Introduction
The load capacity of worm gear drives is

mainly influenced by the size and the position of
the contact pattern. The actual load capacity cal-
culations according to DIN 3996 (Ref. 1) or ISO
CD 14521 (Ref. 2) assume contact patterns that
are well positioned and cover nearly the whole
flank of the wheel.

Size and position of the contact pattern depend
on many parameters, like manufacturing type,
accuracy, geometry of the housing, kind of bear-
ings and operating conditions (see Fig. 1). 

The estimation of the influence of these param-
eters on the contact pattern, and therefore on the
load capacity, requires great experience.

Normally, the idle contact pattern is checked
after assembly by painting some teeth of the
wheel with contact paint. After several revolu-
tions, the abrasion of the contact paint is used to
evaluate the idle contact pattern. Although this
procedure is simple, it is time consuming.
Furthermore, experience is needed if the contact
pattern has to be adjusted. Other disadvantages of
this method are that the load contact pattern and
local specific overloads cannot be detected. To
avoid this old-fashioned procedure, an analytical
method was developed that allows for the deter-
mination of the idle and load contact patterns in
the design stage.

These investigations were carried out at the
Gear Research Centre (FZG) at the Technical
University of Munich, Germany, and were sup-
ported by the Gear Research Organization (FVA)
of Frankfurt, Germany, through research project
252 (Ref. 3).

Idle Contact Pattern
By this new method, the contours of the worm

and the wheel are calculated point by point by tak-
ing into account the boundary conditions and
deviations of the manufacturing process. 

The points of the worm in the axial sections
and the wheel in the corresponding sections are
described by simulating the final manufacturing
process (grinding wheel or hob). Then, these two
contours are brought into contact in a way so the
center distance and the assembly deviations define
the position of each contour. If this is done for
several mesh positions, the idle contact pattern is
then the summation of the smallest distances
between the contours of  worm and wheel at each
mesh position.
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Figure 1—Influence parameters on the contact
pattern of worm gears.
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Calculation of the contour of the worm.The
contour of different types of worm flanks can be
described by simulating the final manufacturing
process, which is usually done by grinding or cut-
ting. In accord with DIN 3975, the worm’s flank
contours that are ground include a concave pro-
file in the axial section, an involute profile in the
transverse section and a convex profile in the
axial section. The flank contours that are cut
include a straight profile in the axial section and
a straight profile in the normal section (Ref. 4).
The grinding disk, for example, can be character-
ized by the diameter d0, the pressure angle α0 and
the profile (see Figure 2).

The contour of the grinding disk can be either
described by analytical equations (Ref. 5) or
approximated by a series of discrete points. Here
the approximation by discrete points is used. 

The discrete points of the worm contour can be
achieved from the points of the grinding disk by
simulating the manufacturing process in a way so
the grinding disk has to be rotated around the worm
axis in several steps and simultaneously has to be
moved in the direction of the worm axis to achieve
the lead. An example is shown in Figure 3.

The advantage of this procedure over the ana-
lytical method is that the real geometry—which
deviates from the ideal geometry—can be taken
into account. These deviations are grinding with a
modified center distance, modified pressure angle
or modified lead. Furthermore, modifications like
crowning can be added to this model.

Calculation of the contour of the worm
wheel.The basic idea for calculating the contour
of worm wheel flanks is the same as shown for
the worm. Here the final manufacturing process is
usually done by cutting. The hob can be charac-
terized by the diameter d0, the pressure angle α0

and the profile.
The hob’s contour can also be approximated

by a series of discrete points. The discrete points
of the wheel contour can be achieved by simulat-
ing the manufacturing process as shown in Figure
4. Here the hob has to be rotated around the wheel
axis in several steps and simultaneously moved in
the feed direction. An example for such a wheel
tooth contour is shown in Figure 5.

Because the contour of the wheel is not based
on empirical equations, the influences of modifi-
cations on the hob, like increased hob diameter,
center distance modification and lead modifica-
tion, can be taken into account.

Simulation of the assembly of the worm gear.
During the assembly of worm and wheel in the
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Figure 2—Derivation of the worm contour by sim-
ulating the grinding process.

Figure 3—Contour of a worm with a straight pro-
file in the axial section and with two teeth (individ-
ual points only shown for one plane).

Figure 4—Derivation of the worm wheel contour by
simulating the cutting process (radial or tangential).
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housing, deviations from their ideal position can
occur. These deviations, of course, also have an
influence on the size and the position of the con-
tact pattern. The most important deviations are
(see Fig. 6):

• wheel offset  ∆b,
• deviation of the center distance ∆a,
• shaft angle error ∆Σ, and
• plane error ∆N.

If the contour from the discrete points of the
worm and wheel teeth are known, the assembly
process can then be simulated by sliding the worm
and wheel together, taking into account the afore-
mentioned boundary conditions.

Now the distances between the different points
of worm and wheel can be calculated. Usually for
one pair of points there is a minimum distance ∆y0

(see Figure 7). From all distances ∆yi, ∆y0 has to
be substracted. Distances, which fall into a speci-
fied small range, can now be viewed as contact
points for this position of worm and wheel. These
contact points form one contact line. This proce-
dure has to be repeated for a series of positions of
worm and wheel. The individual contact lines then
form the idle contact pattern. An example is
shown in Figure 8.

Load Contact Pattern and Specific Load
The idle contact pattern is not identical to the

load contact pattern. Under load, the contact pat-
tern is further influenced by the worm deflection,
the tooth deflection, deflection of the gear bodies
and the elastic deformations of the bearings and
the housing. For the determination of the load
contact pattern and the specific load, the method
of influence numbers is used. In this model, all
influences that do not depend on the load are
described by a rigid body, while all load-depend-
ent influences are described by a spring system
(see Fig. 9). The application of a tooth load to this
model leads to deformations at the different stiff-
nesses and therefore to different specific loads at
the specific points along the flank. The load con-
tact pattern is the summation of all points where
the load is > 0.

For load-free conditions and ideal geometries,
the pads (spring system) and the wedges (rigid
body) are in contact over the whole length (see
Fig. 9a). This is the theoretical contact line. For
real geometries with no load, there is a contact
only in one point (see Fig. 9b). In this position, the
pad is still undeformed. These are the boundary
conditions of the idle contact pattern. Under load,
the pads will be deformed (see Fig. 9c). The total
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Figure 5—Contour of one tooth of a worm wheel
(individual points only shown in one plane).

Figure 6—Deviations from the ideal mounting
position of worm and wheel in the housing.

Figure 7—Pairing of the contours of the teeth of
worm and wheel (individual points not shown).

Figure 8—Example for an idle contact pattern.
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deformation can be described by a system of equa-
tions. For the determination of the discrete defor-
mations at each contact point and the determina-
tion of the single loads at these points, the follow-
ing equations have to be solved:

Summation of the single loads: 
Fbn =  ΣFi = E • F (1)

with: Fbn = total load, Fi = single load in a spring
element, E = unit vector, and F = vector with all
single loads.

Components of a single deformation:
δi* = δges– δi (2)

with: δi* = single deformation in one spring element,
δges= total deformation of the pad, and δi = distance
between spring element and pad with no load.

System of load-deformation equations:
δ* = q • F (3)

with: δ* = vector with single deformations and q =
matrix with all elastic components.

These equations lead to Equation 4:
Fbn = E • q-1 • [δges– δi]             (4)

This is a scalar equation, where Fbn is known from
the torque. The determination of the matrix q with
all elastic components is made by calculating all
influences separately according to Equation 5: 

q = qSW+ qSZ + qRW + qRZ + qWL + qGH (5)

where the single matrices with elastic components
are (see Fig. 10):
qSW for the influence of worm shaft deflection,
qSZ for the influence of the deflection of a

thread of the worm,
qRW for the influence of the wheel shaft deflection,
qRZ for the influence of the deflection of a tooth

of the wheel,
qWL for the influence of the deformation of the

bearings, and
qGH for the influence of the deformation of the

housing.
The determination of the different matrices can

be done by using the method of influence num-
bers. This is shown as an example for the defor-
mation of a tooth of the wheel (see Fig. 11).

To determine the influence numbers for the
tooth deformation, the theory of thin slices is used.
For each contact point, one slice is used.
Depending on the tooth shape and the point where
the load acts, the deviation of the tooth can be cal-

Figure 9—Model of the mesh between worm and worm wheel: a) geometric
ideal conditions; b) real conditions, no load; c) real conditions, with load.

Figure 10—Mechanical models for determination of the matrix with elastic
components.

Figure 11—Slice model for the influence of the deformation of a tooth of a
wheel; thickness a = constant.

Figure 12—Example of a load contact pattern
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culated according the theory of Weber and
Banaschek (Ref. 6). The load P is divided into its
components: QP, NP and MP. These lead to a nor-
mal load N, a transverse load Q and a bending
moment M in the section at x.

To determine the deformation in the direction
of the load, the deformation energy is set equal to
the integral over the elastic stress energy. It is:

(6)
with: P = load, wz = deformation in direction of
the load, xp = length of the slice, αp = load direc-
tion angle, Q = transverse load at x, N = normal
load at x, M = bending moment at x, E = Young’s

–        = –     ––  dx + –     ––– dx + –     ––– dx
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modulus, G = shear modulus, I = mass moment
of inertia at x, A = cross section at x, and AS =
shear area at x.

This equation can be solved in the direction of
the deformation wz, which can be viewed as one
point in the matrix qRZ.

The result of this procedure is a load contact
pattern as shown in Figure 12. Contrary to the
idle contact pattern, where the different levels
characterize the minimum distances between
worm and wheel, the different levels of the load
contact pattern characterize the specific loads
along the contact lines.

Optimization of the Contact Pattern
The procedures described in the previous sec-

tions lead to contact patterns that correspond very
well with measured contact patterns of gears in
practice. Normally, the measured contact patterns
do not have the optimum size and position.
Therefore, an optimization must be done, for
which great experience is necessary. A contact
pattern, calculated by using the procedures
described in the previous sections, can be opti-
mized by variation of the different manufacturing
and assembly parameters. This makes sense only
if there is knowledge of how the different param-
eters influence the size and position of the con-
tact pattern. In the following, a procedure is
described stating how this selection can be done
automatically.

First, the parameters—which can be varied for
achieving a better contact pattern—have to be
selected. Then, a series of calculations has to be
made by varying these parameters in several
small steps. This leads to a series of contact pat-
terns. An example of such a series is shown in
Figure 13.

From this series, the optimum contact pattern
(and the corresponding manufacturing and
assembly parameters) can be found by classify-
ing the size and position of the contact patterns
using the characterizing parameters F, U and H:

The parameter F is the calculated area of the
contact pattern as a percentage of the theoretical
possible contact area as shown in the left part of
Figure 14.

The parameter U characterizes the position of
the contact pattern in the circumferential direc-
tion of the worm. For the calculation of U, the
center of gravity of the area used for the determi-
nation of F, is used (see left part of Fig. 14). It
can be determined using Equation 7:

Figure 13—Series of contact patterns depending on the traverse angle of the hob.

Figure 14—Specification of contact pattern according to size and position.
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U = ± β/βmax (7)
Per definition, values for U between –1 and

+1 are possible. If the center of gravity is in the
inlet area, U will have a negative value; U = 0 if
the center of gravity is in the middle of the flank
and a position in the outlet area has a positive
value.

The parameter H describes the position of the
contact pattern in the direction of the tooth
height. For this, the center of gravity of that area
of the contact pattern is used where the smallest
distances were calculated in the case of the idle
contact pattern or the highest specific loads were
calculated in the case of the load contact pattern.
(see right part of Fig. 14). The restriction on this
small area was done because if the whole area is
used, contact patterns with peaks at the tip or the
root would be classified as well-adjusted contact
patterns. H can be determined as follows:
H = (r – rmin)/(r0 – rmin) if r < r0

H = (r – rmin)/(r0 – rmax) if r ≥ r0 (8)
Also, the parameter H can reach values

between –1 and +1, where a positive value repre-
sents a position of the contact pattern in the direc-
tion of the tip of the tooth and a negative value
represents a position in the direction of the root.

The result of this classification is shown by an
example in Figure 15. A typical position of a con-
tact pattern is in the tooth height direction in the
middle and in the circumferential direction tend-
ing slightly into the outlet area. This means H
should be in the area of 0 and U should be in the
area of 0.1. In the example, this corresponds to a
traverse angle η � 20', which leads to a size of
the contact pattern (parameter F) of 87%.

Conclusion
These procedures were verified by a comparison

of calculated idle contact patterns with real contact
patterns of worm gears in practice. An example
from this comparison is shown in Figure 16. From
this figure, it can be seen that the calculated contact
pattern correlates very well with the measured con-
tact pattern. Therefore, these procedures are suitable
for the determination and optimization of the con-
tact pattern of worm gears.r 

This paper was previously presented at the
International Conference on Gears, held March 13–15,
2002, in Munich, Germany. Also, the paper was previ-
ously published by VDI Verlag in the conference’s pro-
ceedings, in VDI report 1665.
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Figure 16—Comparison of a real contact pattern
with the calculated contact pattern.

Figure 15—Results of the classification of the cal-
culated contact patterns (example).
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